UAV/S in GIS

Brookhaven College 1st Flight Operation & Evolving Plans

Summer and Fall 2016

Can we fly the campus?

- July 2016 Used COTS \$2000 UAS
 - DJI Phantom 3 Pro
 - 12 mp camera
- This is turn-key; everything is integrated
 - Sensor and lens
 - Gimbal and mount
 - Flight control and positioning
 - Remote Control

Resources Needed

- To Fly
 - Aviation Consultant (licensed pilot, liaison to local controllers/airports)

ONPOYNT

- UAS
- Mission Planning app
- Viewing device (tablet)
- To have accuracy
 - AOI with group control points
- To result in useful data
 - Solid computing capability
 - Image Processing capability

How we spent 3 days.

- Day 1 Ground Control Points (GCPs)
 - Create the targets
 - Place the targets
 - Capture location coordinates for targets
- Day 2 Flying and Photography
 - Visually plan the missions
 - Flight operations and team
- Day 3 Processing imagery
 - Create data products

Targets are fast, easy and cheap

Sq. Meter Reinforced Edges Staked Flagged Coordinates Captured

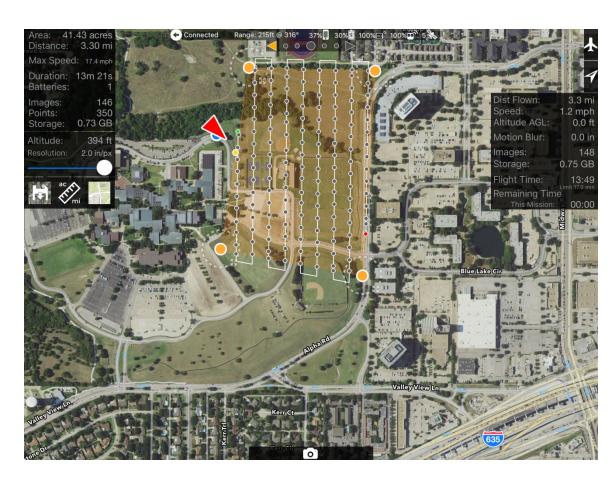
Plotter GPS

The GCPs

4 hours to plot and prep targets

8 hours to place and capture

1 hour to pick them up later


Mission Planning

Map Pilot for DJI \$10 app on the Apple Store

Easy to use

Plan Flight area relative to telemetry

- Battery life,
- Elevation,
- Wind

The Actual Flight

- 1. Plan Mission / set the 'fence' (area of interest)
- 2. Check telemetry
- 3. UAS take off
- 4. Eyes on / monitor flight
- 5. Autonomous image capture
- 6. UAS returns to start / land
- 7. Replace battery & check equipment
- 8. Move to new location

Repeat it all

How did we cover the campus?

- 7 missions
- 400 feet elevation
- Yielded 650 images
- 5 member team
 - PIC pilot in command
 - PAC pilot at controls
 - VO visual observer (3)

DJI 0058.JPG

DII 0061 IDG

DII 0064 IPG

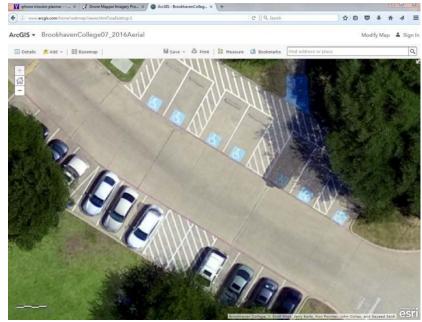
DIT 0059 IPG

DII 0062 IDG

DIT 0065 IPG

DIT OOSO IDC

DII 0063 IDG



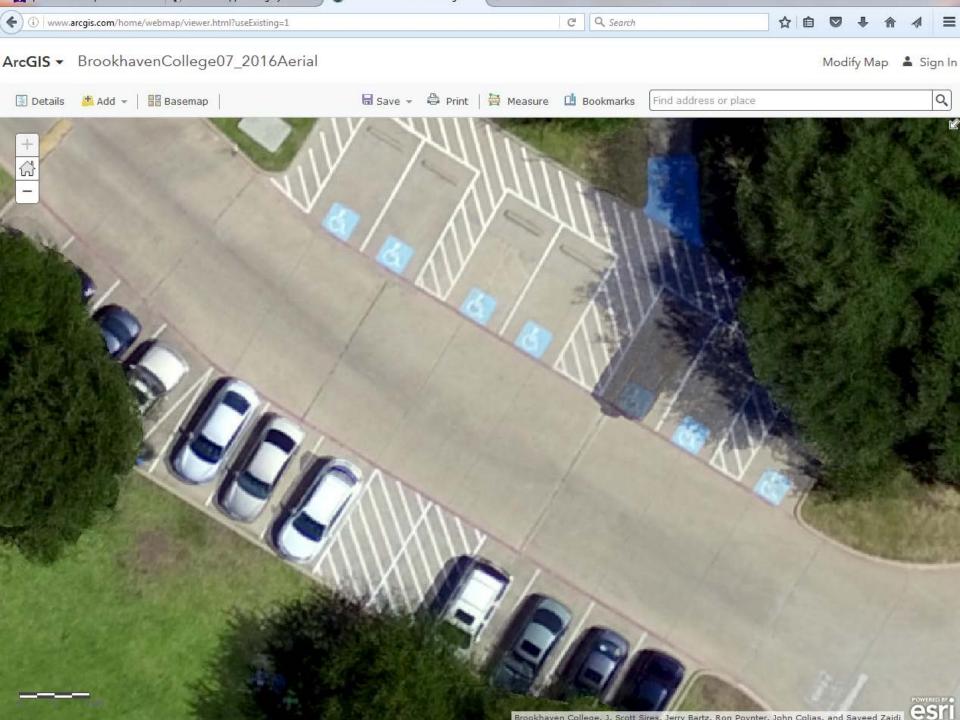

DJI 0066.JPG

Image processing

- Esri's Drone2Map
- 3-hour process to stitch together 650 photos
- Result is a 192 acre orthomosaic
- 2.25" pixel resolution
- Search 'BHC UAV' in ArcGIS Online

Recent Changes / August 29, 2016

- Part 107 Remote Pilot License
- Required for using drones in business
- Age 16 or above
- Drivers license
- Pass a TSA background
- Cost \$150.00
- Pass an online knowledge test (40% pass rate)

New Operating Limits

- Must maintain line of sight
- Approval required to fly in any airspace other than class 'G'
- Flight ceiling of 400' above structure or terrain
- No flight at night
- No payload for delivery
- No operation from a moving vehicle

New Operating Limits (continued)

- License renewal every 24 months
- No operation of more than 1 drone
- No flight over people unless participating or under cover
- 55 lb. loaded weight limit
- Waivers available for most every limitation

Coming Soon from the FAA

- NEXTGEN airspace plan
- Defined drone air routes
- 2nd and 3rd tier license options

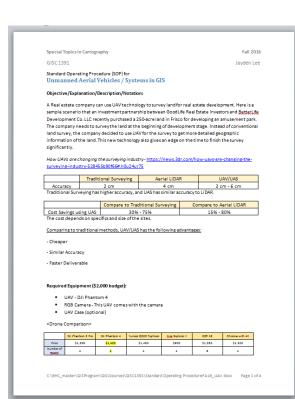
Next Steps at BHC

- DIY / BYO
 - Hexacopter (Fall 2016)
 - Marine vessel (Fall 2017)
- Active courses with UAS technology
- Small robotics (air, land and sea)
- Pre-engineering skills
- Spring 2017 Festival
- More course content throughout

Fall 2016 GIS Course

- Refining and Enhancing
 - COTS vs. BYO/DIY
 - SOP Development
 - Additional missions
 - Data Processing

\$3000 BYO UAS


Function	Item No	Quantity	U	nit Cost	Aggregate Price	Weight(g)
24 MP Sensor	SOA5100BK		1	\$598.00	\$598.00	399
Gimbal	Airy-LE-0203		1	\$599.00		
Camera Trigger	Seagull #MAP2		1	\$42.00	\$42.00	12
Camera Cable	Seagull Sony S2		1	\$16.00	\$16.00	0
Frame	Flame Wheel 550 (F550)		1	\$48.00	\$48.00	478
Flight Controller	9387000081-0		1	\$191.00	\$191.00	312
2nd GPS (primary)	572000003-0		1	\$30.00	\$30.00	35
Motors x6	9536000005-0		8	\$36.86	\$294.88	558
ESC x6	DYS - XS30A		6	\$16.99	\$101.94	52
Pull Propeller	LP10047SF (APC 10x4.7)		2	\$3.06	\$6.12	36
Push Propeller	LP10047SFP (APC 10x4.7)		2	\$3.06	\$6.12	36
2.4ghz transmitter	Radiolink-Acc-AT9-R9D		1	\$119.00	\$119.00	0
Charger	UP120AC DUO AC/DC Charger - 120W		1	\$99.00	\$99.00	0
Landing Gear	PFG-CGCRLG		1	\$200.00	\$200.00	320
Battery	912700004-0		8	\$43.68	\$349.44	1286
Media card	IM1RR4698		2	\$43.99	\$87.98	0
					\$2,788.48	4074

Student built UAV

Built by Seth Bullis

Class-developed SOP

GISC 139	1					Jayden
Control System	Remote Control Phone/Tablet	Remote Control Phone/Tablet	Remote Control Phone/Tablet	Remote Control Phone/Tablet	Remote Control	Remets Centrel
Applications	Film & Photography	Nim & Photography	film & Photography	Film & Photography Surveying	Nim & Photography	Nim & Photography
Max Right time	25 min	25 min	25 min	25 min	15 min	30 min
Operating	2,000 meters	5,000 meters	800 meters	500 meters	300 motors	n/a
Sóll Campa Resolution	12 magapinds	12 magapixals	12 magapixals	14 magapinds	decan't come with camera	12 magapixals
Max video resolution	4k	#R	4k	1050		4k
Body color	White	W9-56	Slack	Sleek	Slack	White
Max speed	16 m/s	20 m/s	5 m/s	15 m/s	30 m/s	n/e
Max Rying altitude	6,000 meters	6,000 meters	122 motors	n/a	100 meters	n/a
rlight planning	You	Yes	No	Yes	Yes	No
Auto landing	To	Yes	Yes	Yes	Yes	Yes
Return to home	Yes	Yes	Yes	Yes	Yes	Yes
Cellisien	No	Yes	No	No	No	No

Reference: http://drones.specbuc.com

rromblu

If you decided to buy ready-to-use UAV (DI) <u>Canthom</u> 4 is optimal for the budget as mentioned above), you don't need assembling process any further. However, you will get much more options and cost savings if you select each part and assemble them by yourself. You can purchase most of the parts listed at <u>www.hobbykins.com</u>

- Parts List

1. The frame (body) - Quadcopter or Hexacopter

2. Motors

3. Propeller

4. Electronic Speed Control (ESC)

5. Battery - 5000 mAh 11.1 volt 3 cell LiPo battery (30 minutes flight time)

. Charger

7. Power distribution board (PDB) - PDB allows one battery to power all 4 motors at once.

8. Transmitter and receiver - At least 4 channels(throttle, yaw, pitch and roll) are required, and will need additional channel for autonomous functionality or control LED lights if you want to do.

9. <u>Microgracessing</u> board (flight control board) - This controls every function in the <u>quadcoptor</u> from moving to staying stable while hovering.

10. GPS (GPS & GNSS)

C:\BHC_master\GISProgram\GISCcourses\GISC1391\Standard Operating ProcedureFA16_UAV.docx Page 2 of 4

Special Topics in Cartography Fall 2016
GISC 1391 Jayden Lee

11. Sensor

12. Gimbal

13. wire & connector

Flight Planning

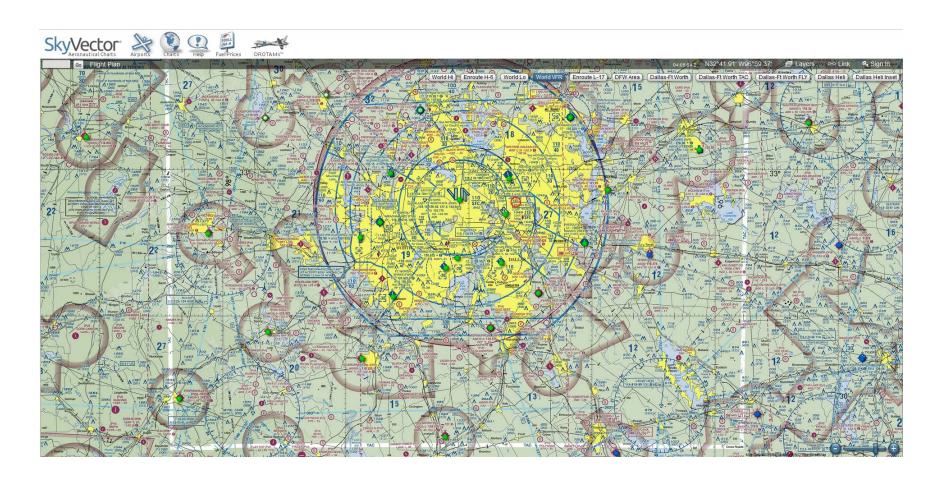
Manual control is generally more useful for impactions that need to react to information in real time, while autonomous control is more useful when one is trying for ly in a systemic postern control is more useful when no exist rying for ly in a systemic postern to read a map. To acquire good quality results, you have to consider the image overlax, flightheight, resolution set. As the drone filiptiplaning gothware is developed, the flight planing gets much easier. It results to not your times for calculating the flighthrough based on your expected quality of the result, and also it is conclident after. So in this project it decided to use an autonomous filiative forware on the market.

	General rule of Image Overlap	
	Min.	Max.
Forward	75%	80%
Lateral	60%	80%

- Ground Control Points

GCPs are used for absolute position information. They are points of known coordinates in the area of interest, and will increase significantly the absolute accuracy of the outputs. The GCPs should be placed homogeneously in the area of interest, and 5 to 10 GCPs are usually enough because more GCPs do not contribute significantly to increasing the accuracy.

- Applications for autonomous control (Available at 'App Store', under \$10)


- Android Apps: Data Mapper, Droid Planner, Drone Deploy.
- iOS Apps: Skycatch Commander, DroneDegloy, Map Pilot from DronesMadeEa

Post Capture Processing:

- Pix4D
- Esri Drone 2 Map Data processed by Drone 2 Map can also be rendered in Esri's ArcGIS online
 web service and integrated into ArcGIS for further processing.
- 3DR Site Scan
 DroneMapper
- ntonemapper

C:\BHC_master\GISProgram\GISCcourses\GISC1391\Standard Operating ProcedureFA16_UAV.docx Page 3 of 4

Skyvector.com for planning

Processing Report Page 1 of 8

D₂M

Experience reveals ease of use

Processing Report

Summary

Project	BHC_DSM
Processed	2016-12-01 02:46:36
Average Ground Sampling Distance (GSD)	5.39 cm / 2.12 in
Area Covered	1.1022 km² / 110.224 ha / 0.4258 sq. ml. / 272.511 acres
Time for Initial Processing (without report)	06h:23m:06s

Quality Check

Images	median of 28479 keypoints per image	0
Dataset	688 out of 691 images calibrated (99%), all images enabled	0
Camera Optimization	0.4% relative difference between initial and optimized internal camera parameters	0
Matching	median of 8388.67 matches per calibrated image	0
Georeferencing	yes, 2 GCPs (2 3D), mean RMS error = 19.218 m	A

Preview

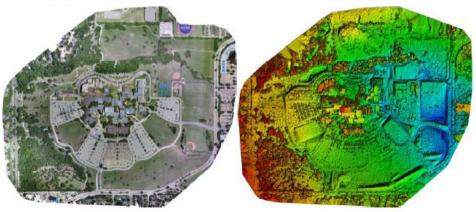


Figure 1: Orthomosaic and the corresponding sparse Digital Surface Model (DSM) before densification

Practice Datasets

https://www.sensefly.com/drones/example-datasets.html

https://cloud.pix4d.com/download/

Fall 2016 GISC1391 Special Topics in GIS (UAV and GIS)

Resources to get started

Find your own resources - Search online for 'ArcGIS UAV'

2014 article explaining the broad application of UAV in GIS.

http://www.esri.com/esri-news/arcuser/spring-2014/uav-and-gis-an-emerging-dynamic-duo

Some common initial questions:

https://geonet.esri.com/thread/162697#comment-580358

- 1) What are the requirements for the UAV camera and GPS/INS system?
- 2) What metadata is required to process still UAV images? Does it have to be FMV military standard?
- 3) Is the new application going to be integrated with Mosaic Dataset/ Image Service/ ArcGIS Desktop and ArcGIS Runtime?
- 4) Can I do the following with the new UAV mapping application?
 - a. Create orthorectiefied image?
 - b. Measure a height?
 - c. Other functionalities?
- 5) According to the video, the point cloud can be produced from images. What is the output of the process? Is it LAS dataset? Is there any automatic algorithms for change detection and feature detection/others?
- 6) What are the time frames for the app release?

What's new regarding developing rules and regulations over the use of UAV?

http://geospatial-solutions.com/category/technology/uasuav/

How in-demand are UAVs in GIS?

http://mappingstats.maps.arcgis.com/apps/MapJournal/index.html?appid=a58b39a0b284418cb56e23f67f0fad6f#map

UAV flight planning tool

http://www.arcgis.com/apps/Viewer/index.html?appid=021e985e6e2d42a694db71ce4ba54312#!

DroneMapper solution

https://dronemapper.com/guidelines

DroneMapper examples

https://dronemapper.com/blog

More Examples, Uses and Case Studies

https://www.gislounge.com/using-unmanned-aerial-systems-uas-for-remote-sensing-of-archaeological sites/

Fall 2016 GISC1391 Special Topics in GIS (UAV and GIS)

Learn More:

This information (these links) found at: http://voices.nationalgeographic.com/2014/03/05/so-youwant-to-shoot-aerial-photography-using-drones/

Drone & Pilot sUAV Logbook

Kike Calvo's Drone Collections

Drone / UAV Dictionary: Includes 300 Commercial UAV Applications

Cool stuff for Drone and Unmanned Vehicle enthusiasts

Drone Entrepreneurship: 30 Businesses You Can Start

Small Unmanned Aircraft: Theory and Practice

Introduction to Unmanned Systems: Air, Ground, Sea & Space

UAV Fundamentals Executive Course

How to Start an Unmanned Aircraft Vehicle (UAV) Business Course on DVD

Small UAV Construction

Getting Started with Hobby Quadcopters and Drones: Learn about, buy and fly these amazing aerial vehicles

Military Robots and Drones: A Reference Handbook (Contemporary World Issues)

The Media Source Presents Drones: Are They Watching You? Magazine

Introduction to Unmanned Aircraft Systems

Drone Pilot (Cool Careers)

Fly by Wire Aircraft: Fighters, Drones, and Airliners

Introduction to Remote Sensing, Fifth Edition

Build Your Own Drone

Kevin Jenkins jenkia8d@gmail.com

Thank you

J. Scott Sires

Geospatial Technology Program Professor & Coordinator Brookhaven College Mathematics & Sciences Division 3939 Valley View Lane Bldg. H, H-115 Farmers Branch, Texas, 75244 972-860-4362

ssires@dcccd.edu www.brookhavencollege.edu/ www.dcccd.edu/gis